The TOPSiDE Detector Concept Timing Optimized PID Silicon Detector

Argonne National Laboratory

Jihee Kim,

Whitney Armstrong, Manoj Jadhav, Sylvester Joosten, Jose Martinez Marin, Zein-Eddine Meziani, Chao Peng, Tom Polakovic, Junqi Xie

August 18, 2020

Introduction

- Design motivation
- TOPSiDE concept
- Hybrid TOPSiDE (UFSD and SOI)
- Future directions with simulation

August 18, 2020

Detector design motivation

- Full acceptance 4π detector
- Full PID for all tracks
- The fewer subsystems, the better

Started a new detector from scratch.

What is TOPSiDE?

TOPSiDE is a central detector concept.

The basic ideas behind TOPSiDE:

- Simple design: ultra-fast Si trackers (UFSD) and granular calorimeters
- Full PID with TOF over entire central region $(-3 < \eta < 3)$
- Covers a well defined central region where extra PID detectors are not needed
- Focused efforts for dedicated PID detectors in regions where they are most needed
- Minimal material in front of calorimeters

Time-of-Flight PID

Central detector region: $(-3 < \eta < 3)$

- Symmetric design with close to 4π coverage
 - $\rightarrow \text{ Ensure exclusivity}$

Time-of-Flight PID

Time-of-Flight PID

Time-of-Flight PID

W. Armstrong

Central detector region: $(-3 < \eta < 3)$

- Symmetric design with close to 4π coverage \rightarrow Ensure exclusivity
- Ultra-fast Si detectors for TOF $\pi-K-p$ separation \rightarrow Provides PID necessary for **SIDIS**
- Imaging calorimeters and particle flow algorithms
 → PID of hadrons/neutrals and background rejection
 important for DVCS and DVMP

Ultra-fast Silicon Detectors

10 ps timing resolution needed for the TOPSiDE 5D Concept

• Timing for Particle ID $(\pi - K - p \text{ separation})$

- LGAD currently state-of-the-art (best time resolution)
- HVCMOS is promising, possibly cheaper, and monolithic design easier
- HBT SiGe technology is also promising (similar character to CMOS but faster and lower power)

Imaging, Digital, and semi-Digital Hadronic Calorimeters

Imaging Calorimetry and Particle Flow Algorithms

- "Particle flow" always provides the best reconstruction.
- Higher granularity \rightarrow less confusion
- Track segments connect adjacent showers associated with same primary particle
- New "Particle Flow" algorithms and methods possible with fine segmentation and excellent time resolution
- PFA output is a list of particles

7 / 12

Hybrid TOPSiDE Silicon Detectors

Use both UFSD and SOI detectors

- Goal of 10 ps time resolution is at track level
- UFSD not required for entire detector
- SOIPIXD → precision tracking
- UFSD \rightarrow precision timing
- SOIPIXD vertex tracking with outer UFSD tracker

Calorimetry ideas to explore

- Imaging calorimetry vs non-imaging
- Impact on reconstruction of low energy electrons
- Extra timing measurement at large radius?

W. Armstrong

August 18, 2020 8 / 12

Argonne 📤

TOPSiDE Simulation Tools

Argonne Software Effort

- Detailed silicon detector descriptions
- Generic tracking reconstruction framework almost complete.
- New detectors quickly and easily implemented
- Staves, frames, cables and other support easily added
- Modern reconstruction framework for algorithm development

TOPSiDE Simulation Tools

Goals

- Develop/assemble full end-to-end simulation and reconstruction framework
- Targeting long term use for the EIC project

Conclusion

- TOPSiDE concept gaining popularity
- UFSD and SOI technology highly complementary
- Different calorimetry options need to be fully explored

11 / 12

Thank You!

